
Nullspace Structure in Model Predictive Control

Hakan Girgin and Sylvain Calinon

Idiap Research Institute, Martigny, Switzerland
hakan.girgin@idiap.ch, sylvain.calinon@idiap.ch

Abstract. Robotic tasks can be accomplished by exploiting different
forms of redundancies. This work focuses on planning redundancy within
Model Predictive Control (MPC) in which several paths can be consid-
ered within the MPC time horizon. We present the nullspace structure in
MPC with a quadratic approximation of the cost and a linearization of
the dynamics. We exploit the low rank structure of the precision matri-
ces used in MPC (encapsulating spatiotemporal information) to perform
hierarchical task planning, and show how nullspace computation can be
treated as a fusion problem (computed with a product of Gaussian ex-
perts). We illustrate the approach using proof-of-concept examples with
point mass objects and simulated robotics applications.

Keywords: nullspace structure, model predictive control, task prioriti-
zation

1 Introduction

Fig. 1: From left to right: kinematic/mechanical redundancy (morphology level),
task redundancy (spatial level), planning redundancy (spatiotemporal level).

A collection of work in neuroscience informs us that being skillful is not
related to being precise [14, 16, 13, 8]. It is instead related to the exploitation of
various forms of redundancy and variations in an optimal way. Figure 1 illustrates
the various forms of redundancy that that can be exploited in robotics. In this
planar example, kinematic redundancy arises when a 2D point is tracked by
a 3-axis robot [15, 3, 11, 7]. Most tasks do not require a specific point to be

ar
X

iv
:1

90
5.

09
67

9v
1

 [
cs

.R
O

]
 2

3
M

ay
 2

01
9

2 Hakan Girgin and Sylvain Calinon

tracked, which means that rather than a point, tracking should instead consider
a distribution of the different options in which the tip of the robot can move
while satisfying the task constraints [5]. we show in this technical report that such
redundancy can also be defined at a path level within an MPC formulation, by
considering as an example the different options that a robot has to move through
a sequence of viapoints.

The structure of the technical report is as follows. In Section 2 and 3, we
review inverse kinematics problem with nullspace structure and standard model
predictive control with quadratic cost and linear dynamics, respectively. In Sec-
tion 4, we show how to apply the same principles of IK nullspace to MPC. We
then show in Section 5 some proof-of-concept examples with unit mass point
agents.

2 Inverse kinematics with nullspace structure

In an inverse kinematic problem, the standard nullspace control formulation,
with a velocity ẋ in Cartesian space as first task and a velocity q̇ in joint space
as secondary task, can be found by solving in the control space u the constrained
objective

û = arg min
u

∥∥u− q̇∥∥2 s.t. Ju = ẋ

= J†ẋ+Nq̇, (1)

with a Jacobian matrix J , its pseudoinverse J† and the nullspace projection ma-
trix N = I −J†J [10], see Appendix A for details. Such nullspace computation
can also be treated as a fusion problem (computed with a product of Gaussian
experts), see Appendix B for details.

The pseudoinverse J† in (1) can be computed in different ways according

to the rank of J . If J is full row-rank, then J† = J>(JJ>)
−1

, or else if J is
full column-rank, then J† = (J>J)−1J>. Using a singular value decomposition
(SVD) to compute the pseudoinverse provides a more general method as it can be
used either in rank-deficient case or in full-rank case. For simplicity, we will adopt
in this paper the non-SVD perspective for the computation of pseudoinverses.
Pseudoinverse computation details are given in Appendix A.

Standard inverse kinematics formulation with nullspace structure can be ex-
tended to have K tasks with assigned priorities, given as

u =

K∑
k=1

k∏
i=1

Ni−1J
†
kẋk, (2)

where Ni is the nullspace matrix of Ji with N0 = I.
A task-priority formulation [9] describes a solution to the nullspace control

of inverse kinematics problem as

u = J†1 ẋ1 + (J2N1)†(ẋ2 − J2J
†
1 ẋ1), (3)

Nullspace Structure in Model Predictive Control 3

where the first task is prioritized over the second one. This task priority formu-
lation has a significant advantage over the standard formulation of (1), because
conflicting tasks can be handled more efficiently. This is mainly because (3)
uses the nullspace of the augmented Jacobian matrix, whereas (1) only uses the
nullspace of the Jacobian of the previous task. For more details, the reader can
refer to Appendix A.

This also can be extended to have K tasks with the recursive formulation
[12]

ui+1 = ui + (JiP
A
i−1)†(ẋi − Jiui), (4)

where PA
i = I − JA

i
†
JA
i is the projection matrix onto the nullspace of the

augmented Jacobian matrix JA
i = [J>1 J

>
2 . . .J

>
i]>.

PA
i can also be formulated recursively as

PA
i = PA

i−1 − (JiP
A
i−1)†(JiP

A
i−1),

with PA
0 = I, see [2] for details.

In inverse kinematics, we can encounter kinematic singularities arising from
the singularity of the Jacobian matrix which can result in high velocities that
could potentially damage the robot. These singularities can be handled using a
damped (or regularized) pseudoinverse computed as

J‡ = J>(JJ> + λIx)
−1

= (J>J + λIu)
−1
J>, (5)

where λ is the damping factor. Ix and Iu are identity matrices with dimensions
of x and u, respectively. Using SVD, we can show the existence of the nullspace
in the presence of damping (see Appendix A). Note that both standard and
task-priority formulations can contain kinematic singularities. However, we can,
in addition, have an algorithmic singularity in (3) because of the computation
of (J2N1)†. Algorithmic singularities can also be handled using damped pseu-
doinverses [6].

In some cases, we may be more interested in using some specific joints u
more than others, or putting more importance on accomplishing the task on a
specific dimension of x. By denoting J̃ = U>x JU

>−1

q , ˜̇x = U>x ẋ and ˜̇q = U>q q̇
we obtain the weighted IK solution

u = U>
−1

q J̃† ˜̇x+U>
−1

q Ñ ˜̇q, (6)

where Ux and Uq are decomposition (e.g., eigen or square root) matrices of
weight matrices Wx and Wq, respectively, such that Wx = UxU

>
x and Wq =

UqU
>
q . Computational details are given in Appendix A.

3 Standard model predictive control

We consider the model predictive control (MPC) problem of estimating a con-
troller ut ∈ Rd for a discrete linear dynamical system xt+1 = f(xt,ut), with

4 Hakan Girgin and Sylvain Calinon

state variable xt ∈RDC , typically composed of position and velocity (C = 2).
The problem is formulated as the minimization of the cost

c =
(
µT−xT

)>
QT

(
µT−xT

)
+

T−1∑
t=1

((
µt−xt

)>
Qt

(
µt−xt

)
+ u>t Rt ut

)
(7)

subject to the linearization of xt+1 = f(xt,ut) expressed as

xt+1 = At(xt,ut) xt +Bt(xt,ut) ut. (8)

Such problem can be solved by considering x=
[
x>1 ,x

>
2 , . . . ,x

>
T

]> ∈RDCT the

evolution of the state variable, u =
[
u>1 ,u

>
2 , . . . ,u

>
T−1

]> ∈ Rd(T−1) the evolu-

tion of the control variable, µ =
[
µ>1 ,µ

>
2 , . . . ,µ

>
T

]> ∈ RDCT the evolution of
the tracking target, Q = blockdiag(Q1,Q2, . . . ,QT) ∈ RDCT×DCT the evolu-
tion of the required tracking precision, and R=blockdiag(R1,R2, . . . ,RT−1) ∈
Rd(T−1)×d(T−1) the evolution of the cost on the control inputs.

The constrained objective (7) then corresponds to

û = arg min
u

(
µ− x

)>
Q
(
µ− x

)
+ u>Ru s.t. x = Sxx1 + Suu

=
(
Su
>QSu +R

)−1
Su
>Q
(
µ− Sxx1

)
= (J̃>J̃ + λIu)

−1
J̃> ˜̇x

= J̃‡ ˜̇x, (9)

with transfer matrices Su and Sx (see Appendix C for details). J̃ = U>xSu

and ˜̇x = U>x (µ− Sxx) with decomposition Q = UxU
>
x , and by assuming that

R = λIu.

4 Model predictive control with nullspace structure

Recall that for LQR J̃ = U>xSu, where Su ∈ RDCT×D(T−1), m = DCT , n =
D(T − 1) r = rank(Su) = D(T − 1). Sparse Ux are typically used in MPC
problems, allowing the use of nullspace structures with a transfer matrix Su of
reduced rank. A simple example is to reach a goal state µ with a precision QT

starting from an initial state x0. We can construct Q and µ accordingly as Q =
blockdiag(0,0, . . . ,QT) and µ =

[
µ>,µ>, . . . ,µ>

]>
. We have then rank(J̃) =

rank(Q) = rank(QT) which is smaller than the original matrix.
If we have sparse weight matrices, then the complete solution of (9) can be

rewritten as

û = J̃‡ ˜̇x+ Ñ u(2), (10)

with LQR nullspace projection matrix Ñ and any secondary control trajectory
u(2). Instead of putting a secondary control trajectory, one can also replace

Nullspace Structure in Model Predictive Control 5

it with the corresponding J̃‡2
˜̇x2. In this paper, however, for the stability and

robustness issues mentioned in [1], we will use task-priority formulation (4) as

ûi+1 = ûi + P̃A
i−1 (J̃iP̃

A
i−1)‡ (˙̃xi − J̃iûi), (11)

where P̃A
i = I − J̃A‡

i J̃A
i is the projection matrix onto the nullspace of the

augmented task matrix (Jacobian matrix, in IK) J̃A
i = [J̃>1 J̃

>
2 . . . J̃

>
i]>. P̃A

i can
also be formulated recursively as

P̃A
i = P̃A

i−1 − P̃A
i−1 (JiP̃

A
i−1)† (JiP̃

A
i−1), (12)

with P̃A
0 = I. Note that this is not exactly (4), since with regularization, we

lose the properties of idempotent matrices (explained in Appendix A), and we
do not have P̃A

i−1(JiP̃
A
i−1)† = (JiP̃

A
i−1)† anymore.

Nullspace structure in MPC allows us to exploit the redundancy in space-
time. At each time step, we can have tasks that require different precisions
redundant in space dimensions, with different priorities. In the same way, we
can have tasks that are redundant in time dimensions for each space dimension.

If we want to have p tasks {J̃i}pi=1 with the same priorities, we can use an

augmented task matrix J̃A
i = [J̃>i J̃

>
i+1 . . . J̃

>
p]> to find an optimal solution that

compromises between these p tasks, without any priorities. This solution is also
called fusion and can be represented by a product of Gaussians [4].

5 Experiments

5.1 Proof-of-concept examples

Our first example consists in reaching a goal position Goal, while passing through
viapoints with different precisions and different hierarchies, see Figure 2. The pri-
mary viapoint represented by Vt

1 is to be on the line (depicted by thin ellipsoid)
at time step t (used as half-time of the execution for the plot). This task creates
redundancy in space-time because according to the upcoming secondary tasks
and previous actions taken, the position on the line at time step t can change.
The secondary viapoint represented by Vt

2 has an isotropic precision with no
redundancy in any space dimension, meaning that at time step t, the objective
of the secondary task is to be at the center of the pink circle. Figure 2(a) shows
an LQR execution with a unit mass double integrator starting from the initial
position (shown by the cross), with 2 viapoint tasks at time step t with hierar-
chies Vt

1 > Vt
2 and the final task Goal. At time step t, the algorithm finds the

best compromise between accomplishing both tasks, taking into account also
the priorities. Such best compromise can be found intuitively as the intersection
point between the thin ellipse and projection of the center of the pink circle onto
the thin ellipse, hence the dashed gray line.

Figure 2(b) shows the trajectory of the same agent, with the addition of a
tertiary task Vt+1

3 to be achieved at time step t+ 1 and whose variance is repre-
sented by a purple circle. Since this position can be reached without disturbing

6 Hakan Girgin and Sylvain Calinon

the primary and secondary tasks, the trajectory changes so as to accomplish
all three tasks. Figure 2(c) shows that the addition of another quaternary task
Vt+1

4 to be achieved at time step t + 1, represented by a turquoise circle, does
not change the trajectory shown in Figure 2(b) because this task is in conflict
with the tertiary task and is thus neglected due to its priority.

Fig. 2: LQR with initially at the position shown by the cross and (a) 2 inter-
mediary tasks at time step t with hierarchies Vt

1 > Vt
2 and the final task Goal,

(b) 2 intermediary tasks at time step t, 1 intermediary task at time step t + 1
with hierarchies Vt

1 > Vt
2 > Vt+1

3 , and the final task Goal, (c) 2 intermediary
tasks at time step t, 2 intermediary tasks at time step t + 1 with hierarchies
Vt

1 > Vt
2 > Vt+1

3 > Vt+1
4 , and the final task Goal. Tasks are represented with

Gaussian ellipsoids, while the resulting trajectory is represented by black lines.
Grey dashed line represents the shortest line between the mean of the Gaussian
ellipsoid of Vt

2 and the line ellipsoid (thin Gaussian ellipsoid) Vt
1.

Figure 3 shows an example where the nullspace formulation has an advantage
over the naive attempt of minimizing both tasks’ errors at the same, using an
hyperparameter δ to set importance weights between the tasks, where δ = 0
achieves only the primary task and a large δ achieves only the secondary task.
In this example, we want to reach the primary point GT at the final time step
T with a given variance represented by green circle as the primary task. We
also want to pass through the viapoint VT−k, k time steps before the final time
step T , with a given variance represented by orange circle as the secondary
task. With real-world robots, we have restrictions on the norm of the control
commands, hence achieving these both tasks would become impossible if they
are too far away in space dimensions but very close in time dimensions. In this
Figure, any naive attempts to accomplish the tasks with a hierarchy imposed by
δ fails, except for very small values, which are not interesting, because we know
intuitively that we can still do much better by trying to achieve the secondary
task than achieving only the primary task.

Nullspace Structure in Model Predictive Control 7

Fig. 3: Comparison between nullspace (solid black line) and standard formulation
(dashed lines) with scaling δ1, δ2, δ3 and δ4 are 1, 0.1, 0.01 and 0.001 respectively,
using a point mass object with double integrator dynamics. The agent has to go
to its goal point GT as its primary task, at the final time step T , with variance
shown by a green circle, and pass through a viapoint VT−k, as a secondary task,
at the time step T − k, with same variance shown by orange circle. When the
secondary task is far away from the primary task in space and time, nullspace
planning tries to pass through VT−k, and is still successful to accomplish the
primary task. On the other hand, no matter scaling of the cost, standard control
cannot have the same performance.

5.2 Robot Simulation

The setup consists of two robotic agents, represented by point mass agents shown
in Figure 5 (black and red). They have to reach a goal position as a primary task
while meeting with each other at the halfway of their movement as a secondary
task. One can think of many real life applications that can be represented by
this example: a bimanual robot passing an object from one hand to the other
and then using both hands individually, or two mobile robots that have to ex-
change some products in a factory before moving to their respective location.
These applications require the robots to have multiple layers of workload, such
as safety, main mission completion, social navigation, etc. Considering that these
two agents are perturbed during their execution to, for example, avoid some ob-
stacles, then we expect these robots to perform their main mission and do the
secondary tasks in the nullspace. In this figure, we see that any perturbation that
is not in conflict between the main task of reaching the goal can be performed
using the nullspace structure by autonomously modifying the meeting position.

We can think of another robotic application where we can exploit the redun-
dancies in time-space dimensions of the robot. In Fig. 5, we have a 4 DoF robot

8 Hakan Girgin and Sylvain Calinon

Fig. 4: Two agents (black and red) have a primary task of reaching their goal
positions at time step T and a secondary goal to meet at some position, at time
step T/2. If obstacles perturb their executions, we observe the nullspace effect
with a shift of the meeting position.

controlled by acceleration commands in T time steps. The state, consisting of 4-
dimensional joint positions and 4-dimensional joint velocities, is 8-dimensional.
Therefore we have a total of 8T DoF along the trajectory of the robot. The robot
has to pick up a cup at time step T/2 and place it at another location at time
step T . We assume that picking up the cup and placing it both spend 8 DoF,
which makes a total of 16 DoF used. The resulting trajectory is shown in Figure
5(a). Then, we impose a secondary objective, after picking up the cup, to hold
a 90 degree angle for its last 2 joints. This is helpful for the robot to hold the
cup with a better manipulability, as a human would do. Note that the secondary
objective uses only 2 DoF at each time step, with a total of 2× (T/2) DoF used.
The resulting trajectory of Figure 5(b) shows that the robot is able to keep 90
degree angles only when it is not in conflict with the tasks of picking up the cup
and placing it.

(a) Without nullspace (b) With nullspace

Fig. 5: A robotic application of nullspace structure within LQR.

Nullspace Structure in Model Predictive Control 9

Appendices

A Computation of nullspace control

The nullspace control problem can be formulated as the constrained objective

min
u

∥∥u− q̇∥∥2 s.t. Ju = ẋ, (13)

which can be solved through Lagrange multipliers, by defining the objective

min
u

∥∥u− q̇∥∥2 + λ>(Ju− ẋ).

Differentiating with respect to u and λ and equating to zero gives

u− q̇ + J>λ = 0, (14)

Ju = ẋ, (15)

whose combination results in

Jq̇ − JJ>λ = ẋ

⇐⇒ λ = (JJ>)
−1

(Jq̇ − ẋ). (16)

By reintroducing (16) into (14), we then get

u− q̇ + J>(JJ>)
−1︸ ︷︷ ︸

J†

(Jq̇ − ẋ) = 0

⇐⇒ u = J†ẋ+ (I − J†J)︸ ︷︷ ︸
N

q̇. (17)

A.1 Pseudoinverse computation

We consider the SVD decomposition

J =
[
U1 U2

] [Σ1 0
0 0

] [
V >1
V >2

]
, (18)

for any J ∈ Rm×n. Here U1 ∈ Rm×r, U2 ∈ Rm×m−r, V >1 ∈ Rr×n, V >2 ∈ Rn−r×n

and Σ>1 ∈ Rr×r, where r = rank(J) and Σ1 is the diagonal matrix of non-zero
singular values of J . Then we can define the pseudoinverse and the nullspace
matrix as

J† = V1Σ
−1
1 U>1 , (19)

N = V2V
>
2 . (20)

Using these notations, one can notice that the only time the nullspace matrix
does not exist, is when r = n since V2 does not exist (see the dimensions).

10 Hakan Girgin and Sylvain Calinon

A regularized pseudoinverse matrix and the corresponding nullspace matrix
can be written as

J‡ = V1Σ
‡
1U

>
1 , (21)

N = V2V
>
2 + V1(I −Σ‡1Σ1)V >1 , (22)

where Σ‡1 = Σ1(Σ2
1 + λI)−1. Notice that in the case of r = n, the nullspace

(that did not exist before) has now some value because even though V2 does not
exist, the second term in (22) is not null and can be denoted as an error term
in the calculation of nullspace matrix when we use regularization.

A.2 Extension to a weighted problem

We would like to find a solution to

min
u

1

2

∥∥u− q̇∥∥2
Wq

, (23)

among all the solutions of

min
u

1

2

∥∥Ju− ẋ∥∥2
Wx

. (24)

In other words, in all the solution set that satisfy the first task, found by min-
imizing (24), we would like to get the ones that satisfy also (23). This is the
interpretation of (13), without Wx and Wq. We can transform these weighted
problems of (24) and (23) into a ”nonweighted” one as in (13) by setting

J̃ = U>x JU
>−1

q , ˜̇x = U>x ẋ , ˜̇q = U>q q̇ , ũ = U>q u, (25)

and obtaining

min
ũ

1

2

∥∥ũ− ˜̇q
∥∥2 s.t. J̃ ũ = ˜̇x. (26)

Then, the solution of (26) should be transformed back to the original space.
Equivalence of weighted formulations to transformed unweighted formulations
can easily be verified by∥∥u− q̇∥∥2

Wq
= (u− q̇)>Wq(u− q̇)

= (u− q̇)>UqU
>
q (u− q̇)

= (U>q u−U>q q̇)>(U>q u−U>q q̇)

= (ũ− ˜̇q)>(ũ− ˜̇q)

=
∥∥ũ− ˜̇q

∥∥2,

Nullspace Structure in Model Predictive Control 11

and ∥∥Ju− ẋ∥∥2
Wx

= (Ju− ẋ)>Wx(Ju− ẋ)

= (Ju− ẋ)>UxU
>
x (Ju− ẋ)

= (U>x Ju−U>x ẋ)>(U>x Ju−U>x ẋ)

= (U>x JU
>−1

q U>q u−U>x ẋ)>(U>x JU
>−1

q U>q u−U>x ẋ)

= (J̃ ũ− ˜̇x)>(J̃ ũ− ˜̇x)

=
∥∥J̃ ũ− ˜̇x

∥∥2.
The weights Wq on the joint space (i.e., on minimization variable space) affect
all the tasks that we want to accomplish. Therefore, we can only have one Wq.
Alternatively, we can have different Wxi

for each task i. When we have the ith

task described in joint space, namely q̇i, then the appropriate transformations
are ˜̇qi = U>q q̇i and ũ = U>q u. When we have the ith task described in task

space, namely J†i ẋi, then the appropriate transformations are J̃i = U>xi
JiU

>−1

q

and ˜̇xi = U>xi
ẋi. After solving the nullspace weighted control problem with

appropriate transformations, one should transform back into the original space
of minimization variable.

A.3 Task priority formulation

A task-priority formulation [9] describes a solution for the nullspace control of
inverse kinematics problem as

u = J†1 ẋ1 + (J2N1)†(ẋ2 − J2J
†
1 ẋ1), (27)

where the first task is prioritized over the second one.

Proof: Consider the solution of the hierarchically the first task as

u = J†1 ẋ1 +N1y, (28)

where y is arbitrary. We would like this solution to satisfy the secondary task
J2u = ẋ2 as well. By plugging (28), we obtain

J2(J†1 ẋ1 +N1y) = ẋ2, (29)

and find

y = (J2N1)†(ẋ2 − J2J
†
1 ẋ1). (30)

We can substitute (30) back into (28) to obtain (27) as

u = J†1 ẋ1 +N1(J2N1)†(ẋ2 − J2J
†
1 ẋ1)

= J†1 ẋ1 + (J2N1)†(ẋ2 − J2J
†
1 ẋ1), (31)

where we use the property ofN1 being idempotent and hermitian, i.e.,N2
1 = N1

and N>
1 = N1, so that N1(J2N1)† = (J2N1)†.

12 Hakan Girgin and Sylvain Calinon

B Computation of nullspace control as PoG

One of the advantages of standard nullspace control over a task priority formula-
tion is that we can formulate the former as a product of Gaussians. By denoting
the pseudoinverse and nullspace projection matrices as

J† = J>(JJ>)
−1
,

N = I − J†J ,

and by considering two Gaussians N (µ1,Γ
−1
1) and N (µ2,Γ

−1
2) with parameters

µ1 = J†ẋ,

Γ1 = J†J ,

µ2 = q̇,

Γ2 = N ,

we can write the product of these two Gaussians as N (µ̂, Σ̂), with parameters

µ̂ = (Γ1 + Γ2)
−1

(Γ1µ1 + Γ2µ2)

= (J†J + I − J†J)
−1︸ ︷︷ ︸

I

(
J†JJ†ẋ+Nq̇

)
= J† JJ>(JJ>)

−1︸ ︷︷ ︸
I

ẋ+Nq̇

= J†ẋ+Nq̇,

Σ̂ = (Γ1 + Γ2)
−1

= (J†J + I − J†J)
−1

= I,

which is here found by solving the quadratic optimization problem

µ̂ = arg min
u

∥∥u− J†ẋ∥∥2
J†J

+
∥∥u− q̇∥∥2

N

= J†ẋ+Nq̇,

corresponding to the standard nullspace control formulation.

For three task case, we should first note that P = J†J and N = I − P
are symmetric idempotent matrices with eigenvalues 0 or 1, therefore positive
semi-definite, since they satisfy the property P 2 = P = P>. Therefore,using
these properties and considering the Gaussian parameters as

µ1 = J†1 ẋ1,

Γ1 = J†1J1,

µ2 = (J2N1)†J†2 ẋ2,

Γ2 = N1J
†
2J2N1,

µ3 = (N2N1)†J†3 ẋ3,

Γ3 = N1N2N1,

Nullspace Structure in Model Predictive Control 13

we can then write the product of these three Gaussians as N (µ̂, Σ̂), with pa-
rameters

Σ̂ = (Γ1 + Γ2 + Γ3)
−1

= (J†1J1 +N1J
†
2J2N1 +N1N2N1)−1

=
(
I −N1 +N1(I −N2)N1 +N1N2N1

)−1
= (I −N1 +N1N1 −N1N2N1 +N1N2N1)−1

= I, (32)

µ̂ = (Γ1 + Γ2 + Γ3)
−1

(Γ1µ1 + Γ2µ2 + Γ3µ3)

= J†1J1J
†
1 ẋ1 +N1J

†
2J2N1(J2N1)†J†2 ẋ2

+N1N2N1(N2N1)†J†3 ẋ3

= J†1 ẋ1 +N1J
†
2 ẋ2 +N1N2J

†
3 ẋ3. (33)

If more than two tasks of different priorities are described in task space, with
Jacobians {Jk}Kk=1, the quadratic optimization problem becomes

µ̂ = arg min
u

∥∥u− J†1 ẋ1

∥∥2
J†1J1

+

K−1∑
k=2

∥∥u− (J†kN
(k)>)ẋk

∥∥2
N(k)Jk

†JkN(k)>

+
∥∥u−N (K)>

†
JK
†ẋK

∥∥2
N(K)>N(K) , (34)

where N (k) =
∏k−1

j=1 Nj , the nullspace projection matrix Nj = (I − J†j−1Jj−1)
and the number of tasks K > 2.

B.1 Extension to a weighted formulation with PoG

Nullspace control can be extended to weighted nullspace control using

µ̂ = arg min
ũ

∥∥u−UqJ̃
† ˜̇x
∥∥2
U−1

q J̃†J̃U−1
q

+
∥∥u− q̇∥∥2

U−1
q (I−J̃†J̃)Uq

−1 , (35)

where J̃ = U>x J U
>
q
−1 and ˜̇x = U>x ẋ.

C Linear system evolution in MPC

The expression x = Sxx1 + Suu in (9) can be found by expressing all future
states xt as an explicit function of the state x1. By writing

x2 = A1x1 +B1u1,

x3 = A2x2 +B2u2 = A2(A1x1 +B1u1) +B2u2,
...

xT =

T−1∏
t=1

AT−tx1 +

T−2∏
t=1

AT−tB1u1 +

T−3∏
t=1

AT−tB2u2 + · · ·+BT−1uT−1,

14 Hakan Girgin and Sylvain Calinon

in a matrix form, we get an expression of the form x = Sxx1 + Suu, with
x1

x2

x3

...
xT

︸ ︷︷ ︸

x

=

I
A1

A2A1

...∏T−1
t=1 AT−t

︸ ︷︷ ︸

Sx

x1+

0 0 · · · 0
B1 0 · · · 0
A2B1 B2 · · · 0

...
...

. . .
...∏T−2

t=1 AT−tB1

∏T−3
t=1 AT−tB2 · · · BT−1

︸ ︷︷ ︸

Su

u1

u2

...
uT−1

︸ ︷︷ ︸

u

,

(36)

where x∈RDCT , Sx∈RDCT×DC , x1∈RDC , Su∈RDCT×d(T−1) and u∈Rd(T−1).

Acknowledgement

This work has been carried out in the CoLLaboratE project (https://collaborate-project.
eu/), funded by the EU within H2020-DT-FOF-02-2018 under grant agree-
ment 820767 and by the MEMMO project (Memory of Motion, http://www.
memmo-project.eu/), funded by the European Commission’s Horizon 2020 Pro-
gramme (H2020/2018-20) under grant agreement 780684.

https://collaborate-project.eu/
https://collaborate-project.eu/
http://www.memmo-project.eu/
http://www.memmo-project.eu/

Bibliography

[1] Antonelli G (2009) Stability analysis for prioritized closed-loop inverse kine-
matic algorithms for redundant robotic systems. IEEE Transactions on
Robotics 25(5):985–994

[2] Baerlocher P, Boulic R (1998) Task-priority formulations for the kinematic
control of highly redundant articulated structures. In: Proceedings. 1998
IEEE/RSJ International Conference on Intelligent Robots and Systems.
Innovations in Theory, Practice and Applications (Cat. No.98CH36190),
vol 1, pp 323–329 vol.1

[3] Baker DR, Wampler II CW (1988) On the inverse kinematics of redundant
manipulators. Intl Journal or Robotics Research 7(2):3–21

[4] Calinon S (2016) Stochastic learning and control in multiple coordinate
systems. In: Intl Workshop on Human-Friendly Robotics, Genova, Italy, pp
1–5

[5] Calinon S, Sardellitti I, Caldwell DG (2010) Learning-based control strategy
for safe human-robot interaction exploiting task and robot redundancies.
In: Proc. IEEE/RSJ Intl Conf. on Intelligent Robots and Systems (IROS),
Taipei, Taiwan, pp 249–254

[6] Chiaverini S (1997) Singularity-robust task-priority redundancy resolution
for real-time kinematic control of robot manipulators. IEEE Trans on
Robotics and Automation 13(3):398–410

[7] Chiaverini S, Oriolo G, Walker ID (2008) Kinematically redundant manip-
ulators. In: Siciliano B, Khatib O (eds) Handbook of Robotics, Springer,
pp 245–268

[8] Ganesh G, Burdet E (2013) Motor planning explains human behaviour
in tasks with multiple solutions. Robotics and Autonomous Systems
61(4):362–368

[9] Hanafusa H, Yoshikawa T, Nakamura Y (1981) Analysis and control of artic-
ulated robot arms with redundancy. IFAC Proceedings Volumes 14(2):1927
– 1932, 8th IFAC World Congress on Control Science and Technology for
the Progress of Society, Kyoto, Japan, 24-28 August 1981

[10] Liegeois A (1977) Automatic supervisory control of the configuration and
behavior of multibody mechanisms. IEEE Trans on Systems, Man, and
Cybernetics 7:868–871

[11] Siciliano B (1990) Kinematic control of redundant robot manipulators: A
tutorial. Intelligent and Robotic Systems 3(3):201–212

[12] Siciliano B, Slotine JE (1991) A general framework for managing multi-
ple tasks in highly redundant robotic systems. In: Fifth International Con-
ference on Advanced Robotics ’Robots in Unstructured Environments, pp
1211–1216 vol.2

[13] Sternad D, Park SW, Mueller H, Hogan N (2010) Coordinate dependence
of variability analysis. PLoS Comput Biol 6(4):1–16

16 Hakan Girgin and Sylvain Calinon

[14] Todorov E, Jordan MI (2002) Optimal feedback control as a theory of motor
coordination. Nature Neuroscience 5:1226–1235

[15] Walker ID, Marcus SI (1988) Subtask performance by redundancy reso-
lution for redundant robot manipulators. IEEE Robotics and Automation
4(3):350–354

[16] Wolpert DM, Diedrichsen J, Flanagan JR (2011) Principles of sensorimotor
learning. Nature Reviews 12:739–751

	Nullspace Structure in Model Predictive Control

